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Abstract

For forecasting the maximum 5-d accumulated precipitation over the winter season at
lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear
and two linear regression models were used, where the models were support vector
regression (SVR) (nonlinear and linear versions), nonlinear Bayesian neural network5

(BNN) and multiple linear regression (MLR). The 118 stations were grouped into six
geographic regions by K -means clustering. For each region, the leading principal com-
ponents of the winter extreme precipitation were the predictands. Potential predictors
included quasi-global sea surface temperature anomalies and 500 hPa geopotential
height anomalies over the Northern Hemisphere, as well as six climate indices (the10

Niño-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-
North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pat-
tern, and the East Atlantic pattern). The results showed that in general the two robust
SVR models tended to have better forecast skills than the two non-robust models (MLR
and BNN), and the nonlinear SVR model tended to forecast slightly better than the lin-15

ear SVR model. Among the six regions, the Eastern Prairies region displayed the
highest forecast skills, and the Arctic region the second highest. The strongest nonlin-
earity was manifested over the Eastern Prairies and the weakest nonlinearity over the
Arctic.

1 Introduction20

Extreme precipitation events, usually responsible for major economic losses and eco-
logical damage, have important impacts on agriculture, energy use and human activity.
There has been enhanced interest in recent years on the apparent increase in the fre-
quency and/or severity of extreme precipitation events for many regions, which might be
related to the increasing concentrations of greenhouse gases (Easterling et al., 2000;25

Groisman et al., 2005). Though the long-term trend of extreme precipitation events
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seems not so significant in most areas of Canada (Zhang et al., 2001; Kunkel, 2003),
the establishment of an accurate and timely extreme event monitoring and prediction
system is still of prime importance for circumventing the potential impacts posed by
climate variations and extreme weather.

Numerous previous studies have shown that the El Niño-Southern Oscillation5

(ENSO), centered in the tropical Pacific, plays an important role in North American
climate variability, especially during the winter season (Barnston, 1994; Shabbar and
Barnston, 1996; Goddard et al., 2001; Wu et al., 2005; Shabbar, 2006). Besides
ENSO, other circulation patterns, such as the North Atlantic Oscillation (NAO), Pacific-
North American (PNA) teleconnection, Pacific Decadal Oscillation (PDO) etc. have10

been found to show influences on precipitation over the Northern Hemisphere (Hsieh
et al., 2006; Wu et al., 2006a, Bonsai et al., 2006; Lorenzo et al., 2008; Lin et al., 2008),
and may contribute skill in seasonal precipitation forecasts. Most seasonal forecasts
focus on predicting the seasonal mean of the precipitation instead of seasonal statis-
tics of extreme precipitation events. Such seasonal extreme statistics are potentially15

noisier than the seasonal mean, hence they may be even harder to predict.
One commonly used technique for seasonal predictions is the empirical or statisti-

cal approach, using linear statistical methods such as correlation, regression (Ward
and Folland, 1991), and canonical correlation analysis (Shabbar and Barnston, 1996).
More recently, machine learning methods such as neural networks (Haupt et al., 2008;20

Hsieh, 2009) have been introduced for nonlinear regression and nonlinear canonical
correlation analysis (Wu et al., 2006a, b; Cannon and Hsieh, 2008). The advantage of
nonlinear methods to linear methods is generally far less evident for climate applica-
tions than for weather applications, since averaging nonlinear daily relations produces
near-linear seasonal relations as a consequence of the central limit theorem (Yuval and25

Hsieh, 2002; Hsieh and Cannon, 2008). A seasonal extreme statistic like the maximum
amount of precipitation over 5 consecutive days in the winter season does not involve
extensive averaging as in the computation of the seasonal mean, thereby avoiding the
linearization effect of the central limit theorem. Hence despite their potentially higher
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noise-to-signal level than the seasonal mean, seasonal extreme statistics may be more
suited than the seasonal mean for nonlinear forecasting by machine learning methods.

Neural network (NN) methods, generally regarded as forming the first wave of break-
through in machine learning, became popular in the late 1980s for nonlinear regression
problems, whereas kernel methods (e.g. support vector regression, SVR) arrived in5

a second wave in the second half of the 1990s (Bishop, 2006; Hsieh, 2009). SVR has
two advantages over NN models – it avoids the multiple minima problem associated
with nonlinear optimization used in NN models, and robust error norms are used in
SVR instead of the non-robust mean squared error (MSE) norm, allowing SVR to bet-
ter handle datasets with outliers. The use of a suitable nonlinear kernel function in SVR10

allows it to be fully nonlinear, while the use of a linear kernel function restricts SVR to
a linear model. Nevertheless, the linear SVR model is different from the multiple linear
regression (MLR) model, since the robust error norm is used in SVR but not in MLR.
Applications of SVR to hydrological problems include Dibike et al. (2001), Khan and
Coulibaly (2006), Bürger et al. (2007) and Anandhi et al. (2008).15

In this paper, we have a four-way comparison of forecast skills from nonlinear SVR,
linear SVR, Bayesian NN (BNN) and MLR. The objective is to see how robust and
non-robust structures as well as nonlinear and linear capability in the models affect
forecast skills when the predictand is the very noisy and non-Gaussian winter extreme
precipitation anomaly. The description of the data and the forecasting methods are20

given in Sects. 2 and 3, respectively. Section 4 presents the results of forecasting the
winter extreme precipitation over Canada, followed by the conclusion in Sect. 5.

2 Data

Monthly extended reconstructed sea surface temperature (SST) data (ERSST version
3 (Smith et al., 2008)) were obtained from the National Oceanic and Atmospheric Ad-25

ministration (NOAA) with a spatial resolution of 2◦×2◦ for the period 1950–2007; while
monthly 500 hPa geopotential height (Z500) data with 2.5◦×2.5◦ horizontal resolution

3524

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/3521/2010/hessd-7-3521-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/3521/2010/hessd-7-3521-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 3521–3550, 2010

Seasonal prediction
of winter extreme

precipitation

Z. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

from the National Centers for Environmental Prediction (NCEP) reanalysis were used
in this study for the same period (Kalnay et al., 1996). We only used SST data within
the zonal band between 30◦ S and 70◦ N, and Z500 data over the North Hemisphere
(20◦ N–90◦ N), quite similar to Shabbar and Barnston (1996). To reduce memory need,
the SST data were averaged into 6◦×4◦ grids with 1020 spatial points, and the Z5005

data into 5◦×5◦ grids with 1008 spatial points.
Seasonal SST and Z500 anomalies were obtained by removing the climatological

cycle from the monthly mean data and filtering them using a 3-month running mean.
After normalizing the anomalies, time-lagged copies of the data were stacked (i.e. the
original copy, plus copies time-lagged by 3, 6 and 9 months were assembled together)10

and treated as a new enlarged dataset to be compacted by principal component anal-
ysis (PCA). This PCA process, called space-time PCA, singular spectrum analysis or
extended empirical orthogonal function (EEOF) analysis, is performed on the SST and
Z500 normalized anomalies separately, each having 5 leading principal components
(PC) retained (and these will be referred to as the SSTPC and Z500PC below).15

Monthly climate indices for the Niño-3.4 region SST (NINO), the North Atlantic Oscil-
lation (NAO), the Pacific-North American (PNA) teleconnection, the Scandinavia (SCA)
pattern, and the East Atlantic (EA) pattern – were downloaded from the website of
Climate Prediction Center (CPC), NOAA. The description of listed indices can also
be found from the CPC site (http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.20

shtml). Monthly values of the Pacific Decadal Oscillation (PDO) were obtained from the
Joint Institute for the Study of the Atmosphere and Ocean, University of Washington
(http://jisao.washington.edu/pdo/PDO.latest).

Daily 5-d total precipitation records were obtained from 461 climate stations in
Canada for the 1900–2007 period. Only stations with data covering at least the pe-25

riod of 1950–2007 were considered as candidates for the analysis. This period was
selected to maximize the number of stations while attempting to maintain the longest
possible records. In addition, stations with more than 5% missing data over 1950–2007
were not used. Under these conditions, only 118 stations qualified for further study. For
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each station, its monthly maximum was first calculated from the daily 5-d accumulated
precipitation data, which suggested the heaviest precipitation event during that month.
The climatological seasonal cycle of 5-d precipitation was then removed, and the 3-
month maximum was identified as the seasonal extreme precipitation anomaly. Only
winter (December to February) data from 1950/51 to 2006/07 (57 winters) were ana-5

lyzed here. The reason that the maximum 5-d total precipitation instead of the daily
extreme is used here because this study focuses on the extreme events related to
low-frequency signals of large-scale variations in the atmosphere-ocean system. In
addition, larger-scale impacts, such as floods from heavy precipitation are mostly due
to multi-day episodes. Maximum 5-d precipitation has been also chosen as one of10

the standard seasonal extreme precipitation indices by the European Union STARDEX
project (STAtistical and Regional dynamical Downscaling of Extremes for European
regions).

In view of the diversity of the Canadian climate, we classified the 118 stations into
six groups using K -means clustering (Zhang et al., 2001; Whitfield et al., 2002). The15

118×118 elements of the intercorrelation matrix among station precipitation, which as-
sumes the internal spatial coherence of precipitation variability does not change with
time, and the 118×6 elements of the correlation matrix between station precipitation
and the six climate indices, which reflects the relationship between seasonal extreme
precipitation and large-scale atmospheric teleconnection and SST indices, were taken20

as inputs to the K -means algorithm. The Euclidean distance was used in cluster anal-
ysis to measure dissimilarity between stations.

Figure 1 presents the spatial distribution of the Canadian stations, with their mem-
bership in the six clusters shown by different symbols. Hence the cluster analysis has
divided the Canadian domain into six geographic regions. The Pacific coastal region25

(R1), under the influence of warm ocean currents and moisture-laden winds, receives
the most rain and snow during winter. In the Cordilleran region (R2), the warm, moist
Pacific air is forced to rise over the mountains, cools and falls on the western slopes
in sizeable amounts of precipitation as rain at lower altitudes and snow at higher ones;
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however, the eastern slopes and central plateau region are arid. Eastern Prairies (R3)
receive considerably less precipitation than most other parts of Canada, often being
dry for long periods. For the Arctic region (R4), it is extremely cold with very low pre-
cipitation. The Great Lakes region (R5) receives rather uniform precipitation through
the year with heavy snowfalls in winter. In the Atlantic coast (R6), extremely cold air5

masses are modified by oceanic influences, which also cause considerable snow and
precipitation in winter. The number of stations for each cluster/region and the corre-
sponding mean precipitation, i.e. the 3-month mean of the 5-d total precipitation over
all winters and over all stations in each region, are shown in Table 1, where the mean
precipitation was 78.5 mm over the west coast and 63.8 mm over the east coast, much10

larger than the 8.8 mm over the Arctic region in winter.
For each region, we applied PCA to the seasonal extreme precipitation anomalies,

and preserved the leading PCs. Table 1 summarized the explained variance by the
first few PCs retained for each region in column 4. For example, the 7 leading PCs
for the Pacific coastal region (R1) account for 85% of total variance of the precipitation15

anomalies. Each PC was then chosen as the predictand for a forecast model. The
seasonal extreme precipitation anomaly forecasts were reconstructed by summing the
forecasted PCs multiplied by their corresponding empirical orthogonal function (EOF)
spatial patterns.

3 Methodology20

3.1 Support vector regression

Support vector machines were originally designed for classification problems (Vapnik,
1995). They were then extended to nonlinear regression problems (Vapnik et al., 1997;
Bishop, 2006). Here we describe the essence of support vector regression (SVR).

Let x denote the m inputs or predictors and y denote the single output variable or25

predictand. By introducing a nonlinear mapping function φ, the nonlinear regression
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problem between x and y can be converted to a linear regression problem between φ

and y , i.e.

f (x,w )= 〈w ,φ(x)〉+b, (1)

where 〈,〉 denotes the inner product, and w and b are the regression coefficients ob-
tained by minimizing the error between f and the observed values of y . To measure5

this error, instead of the commonly used mean squared error norm, SVR uses the
ε-insensitive error norm defined by

|f (x,w )−y |ε =
{

0, if |f −y |<ε
|f −y |−ε, otherwise,

(2)

i.e. when the difference between f and y is smaller than ε, the error is ignored, whereas
when the difference between f and y is large, the error approximates the mean abso-10

lute error, which unlike the mean squared error, is robust to outliers in the data.
The w and b coefficients are estimated by minimizing the regularized error function

R using sample data (xi ,yi ), where

R =
C
N

N∑
i=1

|f (xi ,w )−yi |ε+
1
2
‖w ‖2 , (3)

with C and ε prescribed parameters (commonly referred to as hyperparameters), and15

N the sample size. The second term is called the regularization (or weight penalty)
term, and when a small value of C is used, the regularization term becomes prominent
relative to the first term, and the minimization of R forces the w coefficients to have
small magnitude, thereby limiting model complexity.

The conversion of a nonlinear regression problem to a linear regression problem20

(Eq. 1) eliminates the need for nonlinear optimization, which has to deal with the pres-
ence of multiple local minima in the error function, as in the case of NN methods.
However, φ(x) may be a very high (or even infinite) dimensional vector, hence solving
the linear regression problem may be prohibitively expensive. In SVR, a kernel trick
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is used, which is to replace the inner product 〈φ(x),φ(x′)〉 in the solution algorithm
by a kernel function K (x,x′), which does not involve handling the unwieldy φ(x). The
minimization of Eq. (3) involves Lagrange multipliers, and the final regression estimate
can be expressed as in the form (Bishop 2006)

f (x)=
N∑
i=1

aiK (x,xi )+b. (4)5

Performance of the SVR model depends on the choice of the kernel function and
the hyperparameters. In this study, we used the linear kernel, K (x,xi )=〈x,xi 〉, and

the Gaussian or radial basis function (RBF) kernel, K (x,xi )=exp
(
−‖x−xi‖

2/(2σ2)
)

,

with the hyperparameter σ controlling the width of the Gaussian function. When
the linear kernel is used, the SVR performs robust linear regression, whereas with10

the RBF kernel, the SVR model performs robust nonlinear regression. We used
the SVR codes by Chang and Lin (2001), downloadable from the LibSVM website
(http://www.csie.ntu.edu.tw/∼cjlin/libsvm). The hyperparameters, C, ε, and σ (for the
RBF kernel) can be tuned instead of predefined subjectively.

3.2 Bayesian neural network (BNN)15

As NN models are now commonly used in hydrology (Solomatine and Ostfeld, 2008),
we will only briefly outline the approach used in our study. An NN model is trained
from a data set (x,y), with x the predictors and y the predictand, by adjusting network
parameters or weights w so as to minimize a regularized error function

E (w )=
C
N

N∑
i=1

(f (xi ;w )−yi )
2+‖w ‖2 , (5)20

where the first term is the parameter C times the mean squared error, while the second
term is the regularization term. A small C will strongly suppress the magnitude of w
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found by the optimization process, thereby yielding a less complex (i.e. less nonlinear)
model. The best value for C is commonly chosen upon validating the model perfor-
mance over independent data not used in training the model. With the optimal C, the
model should be neither overfitting nor underfitting the data.

An alternative to using validation to find the best value for C is BNN (MacKay, 1992),5

a neural network designed based on a Bayesian probabilistic formulation. The idea
of BNN is to treat the network parameters or weights as random variables, obeying
an assumed prior distribution. Once observed data are available, the prior distribution
is updated to a posterior distribution using Bayes’ theorem. BNN automatically deter-
mines the optimal value of C without the need of validation data (Bishop, 2006). In this10

study, the BNN model used was from the NETLAB toolbox (Nabney, 2002), with a stan-
dard mapping function f , i.e. a layer of hyperbolic tangent mapping followed by linear
mapping. As NN suffers from multiple minima in E , an ensemble of 30 BNN models
was built from random initial weights, and the ensemble mean was taken as the final
forecast of the BNN model.15

3.3 Double cross-validation

For seasonal forecasting, the sample size to the number of predictors is relatively small,
since we have 5 SSTPCs, 5 Z500PCs and 6 climate indices as predictors. Hence PCA
is again applied to these predictor time series to further reduce the number of pre-
dictors. An additional advantage of PCA is to produce uncorrelated predictors. To20

determine p, the optimal number of PCs to retain as predictors, cross-validation is
needed. In an n-fold cross-validation procedure, the data record is divided into n seg-
ments, a segment is reserved as validation data, and the other segments as training
data. The model is trained using the training data, then validated or tested on the
independent data in the validation segment. By rotating the validation segments, the25

entire data record can be used for validation. As mentioned earlier, for each region
(as determined by the cluster analysis), PCA was applied to the seasonal extreme
precipitation anomalies for all the stations in that region, yielding the predictand PCs.
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Cross-validation is also needed to determine nPC, the optimal number of predictand
PCs to retain for each region (Table 1).

For the SVR model, we used the Cherkassky and Ma (2004) approach to estimate
the value of the hyperparameters, and then use a finer grid search to pinpoint the
optimal values of the hyperparameters under cross-validation. To use independent5

data to test or verify the model forecasts, a second round of cross-validation is needed,
hence a double cross-validation procedure (Cannon and Hsieh, 2008).

The procedure involves two rounds of cross-validation, an outer round (CV1) and an
inner round (CV2). For CV1, the first 5 yr of data were reserved for forecast testing, and
the remaining data were used as training data. Forecast testing was only done on the10

middle 3 yr of the 5-yr data segment to alleviate the leakage of low-frequency signals
from the training data to the adjacent test data. We repeated the above process by
moving the 5-yr window of test data forward by 3 yr each time until the whole record
was used for forecast testing.

On the training data, a 7-fold cross-validation (CV2) was implemented to determine15

the optimal values for p, nPC and the hyperparameters: First the Cherkassky and Ma
(2004) estimates were used for the hyperparameters, and the optimal p was estimated
in CV2. Then a finer grid search for the optimal hyperparameter values and for the
optimal nPC was undertaken in CV2. The model trained with these optimal p, nPC
and hyperparameters was then used to forecast the test data under CV1. For BNN,20

the optimal number of hidden neurons to use in a neural network model was found
from CV2.

3.4 Forecast skill scores

To evaluate model performance on forecasting the seasonal extreme precipitation, we
reported the Pearsons correlation coefficient (CORR), the Willmott index of agreement25

(IOA) between the observed and model-predicted values, the skill score based on the
mean absolute error (MAE) of the forecast, and SkillV=SDp/SDo, the ratio of the stan-
dard deviation (SD) of the model predictions to that of the observations. All four skill
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scores are used because they indicate different components of model error. While
CORR is a common measure of the linear dependence between the forecast and the
observation, it does not take forecast bias into account, thus it is possible for a forecast
with large errors to still have a good CORR score. IOA is defined as (Willmott, 1982):

IOA=1−
∑N

i=1(Pi −Oi )
2

∑N
i=1

(
|Pi −O|+ |Oi −O|

)2
, (6)5

where N is the number of samples at the station, Oi and Pi are, respectively, the ob-
served and predicted values for the i th sample, O is the average of the observed values,
and 0≤IOA≤1, with 1 being perfect score. IOA has been proposed as an alternative
to CORR, but it is sensitive to the difference between the mean of Pi and O as well as
the difference between the standard deviation of Pi and that of Oi . MAE measures the10

mean absolute error between the observed and predicted values, i.e.

MAE=
1
N

N∑
i=1

|Pi −Oi |. (7)

MAE is considered a more natural and superior measure of average error than the
commonly used root mean squared error (Willmott and Matsuura, 2005). To compare
forecasting performance across different regions, instead of MAE, we used the MAE15

skill score (MAESS), defined by MAESS=1−MAE/MAEc, where

MAEc =
1
N

N∑
i=1

∣∣∣O−Oi

∣∣∣, (8)

is the MAE of the climatological forecasts. The MAESS is positive (negative) when the
accuracy of the forecasts is greater (less) than the accuracy of the climatological fore-
casts. The SkillV score is used to measure how close the predicted standard deviation20

approaches the observed one, with the perfect score being 1.
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4 Forecast results

The cross-validated forecast scores averaged over all stations in each region at lead
times of 3, 6, 9 and 12 months using the MLR, SVR with linear kernel (SVR-L), nonlin-
ear SVR with RBF kernel (SVR-R) and BNN models are shown in Figs. 2–7 for the six
regions.5

For the Pacific coastal area (Fig. 2), CORR, IOA and MAESS showed that in gen-
eral the SVR-R model tended to do slightly better than the SVR-L model, and both did
better than the MLR and BNN models. Only the SVR-R model attained slightly posi-
tive MAESS (Fig. 2c), while both linear models and BNN displayed negative MAESS,
indicating that they underperformed climatological forecasts. The relatively poor per-10

formance in MAESS can be partly explained by the SkillV score shown in Fig. 2d, which
shows all models dramatically under-predicting the magnitude of the anomalies. Iron-
ically, BNN had the best SkillV scores as well as the worst MAESS among the four
models. The reason is that BNN being a non-robust nonlinear model is easily over-
fitted to the very noisy data. Even with an ensemble average to alleviate overfitting,15

BNN generated relatively large amplitude forecasts compared to the other three mod-
els which are less prone to overfitting.

For the Cordilleran region (Fig. 3), CORR, IOA and MAESS again showed that in
general the SVR-R model did slightly better than the SVR-L model, and both did better
than the MLR and BNN models, which actually attained negative CORR scores for20

all lead times. Although all four models had negative MAESS (Fig. 3c), partly due to
their under-predicting the magnitude of the anomalies (Fig. 3d), the SVR-R did slightly
better than the SVR-L, and much better than MLR and BNN in terms of the MAESS.
The forecast skills, even with the SVR-R model, are very modest, but interestingly,
there is no significant decline in skills as the lead time increased, suggesting that the25

skills came from low-frequency signals in the climate system. Overall, the skills are
lower in the Cordilleran region (R2) than in the Pacific coastal region (R1).
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The overall skills in the dry Eastern Prairies region (R3) (Fig. 4) is in general higher
than those in regions R1 and R2. For CORR (Fig. 4a), the SVR-R model shows the
best forecast performance at all lead times, with values above 0.4 up to 6-month lead
time. Both SVR models did much better than MLR and BNN, and up to a lead time of
9 months, the advantage of the SVR-R model over the SVR-L model is clearly mani-5

fested. In the MAESS, SVR-R did best among the four models, outperforming climato-
logical forecasts due to its positive MAESS values. In SkillV (Fig. 4d), again BNN fore-
casted anomalies with standard deviations most similar to those observed, however,
the BNN forecasts are unimpressive in terms of the CORR, IOA and MAESS scores.
Overall, among all 6 regions, this region shows the highest forecast scores and the10

clearest advantage of incorporating nonlinearity in the models. Shabbar and Barnston
(1996) also found the highest winter seasonal mean skill in the Eastern Prairies in their
canonical correlation analysis prediction model.

For the dry Arctic region (R4), the overall skills (Fig. 5) were about the second high-
est among the six regions. Here the SVR-L model clearly outperformed the MLR,15

but the SVR-R model did not improve on the SVR-L model, and in fact did slightly
worse. Hence, in contrast to the Eastern Prairies, the Arctic region shows that incor-
porating nonlinearity was unnecessary; however, incorporating robustness in the linear
regression was important as MLR could not match SVR-L. The Great Lake region (R5)
(Fig. 6) and the Atlantic coastal region (R6) (Fig. 7) have the lowest skills among the20

six regions. In both regions, both the SVR-L and SVR-R models did better than MLR
and BNN, suggesting that robustness helps. However, there is no significant difference
between the SVR-R and SVR-L model scores, hence incorporating nonlinearity did not
lead to significant improvement in these two regions.

As to the dependence of forecast skills on the lead time, the Eastern Prairies (R3)25

showed highest skills at 3-month lead, followed by gradual decline with longer leads,
while the Pacific coast (R1) showed highest skill at 6-month lead. Surprisingly the
other four regions all showed highest skills at 9-month lead, indicating that the signal
is of low-frequency origin and forecasts of winter extreme precipitation made during
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the summer-autumn seasons were actually less skillful than those made earlier in the
year, which is not unprecedented as the ENSO system is also known to have a “spring
barrier”, i.e. lower skills for forecasts issued during spring (Xue et al., 1994).

Instead of averaging forecast skills over each region, we next displayed the forecast
correlation skills of the SVR-R model at each station (Fig. 8). Positive correlation oc-5

curred at the vast majority of stations at all lead times, with a few stations constantly
showing good performance for all the lead times. The SVR-R model gave several of its
best forecasts for the Arctic stations, with correlations around 0.7 – although over all
stations in the Arctic region, the averaged correlation was lower than that in the East-
ern Prairies region. Over most stations in the Eastern Prairies, the forecast correlation10

was around 0.3 to 0.5. For the Pacific coastal area, the correlation was always above
0.3 except at the 9-month lead. For the Western Cordillera, Great Lakes and Atlantic
areas, the forecast skills were weaker.

The spatial distribution of the difference in the correlation scores between the SVR-R
model and the SVR-L model (Fig. 9) shows that at most stations, the nonlinear SVR15

method has an advantage over the linear one, though its advantage decreases with
increasing lead time. The advantage of the nonlinear SVR model is most prominent in
the Eastern Prairies up to a lead time of 9 months. Nonlinearity is not advantageous
over the Arctic region.

A similar plot displaying the difference between the SVR-R model and the MLR20

(Fig. 10) shows that with only a few exceptions, the SVR-R model is clearly supe-
rior to the MLR model over all areas and at all lead times, by at least 0.2 on average in
terms of the correlation score.

5 Conclusions

SVR models, with linear and RBF kernels, have been applied to predict the seasonal25

extreme precipitation anomalies in winter over Canada. In general, the robust SVR
models clearly outperformed the non-robust MLR and BNN models in terms of forecast
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skills, thereby demonstrating the value of models with robust error norms for dealing
with the very noisy and non-Gaussian winter extreme precipitation data. Meanwhile
the performance of the nonlinear SVR model (SVR-R) tended to be slightly better than
the linear SVR model (SVR-L), with the exception of the Arctic region, which seemed
to lack a nonlinear signal.5

The strongest nonlinearity was found over the Eastern Prairies according to the dif-
ference in the forecast performance between the SVR-R and SVR-L models. This
indicates that in the Eastern Prairies, gains in forecast skills came not only from using
a robust error norm, but also from the nonlinear influence of climate fluctuations such
as ENSO and other teleconnections on the extreme precipitation.10

Arctic winter precipitation is different from that in the other five regions as all of Arctic
winter precipitation is snow with relatively low water content that is easily moved by
strong winds. There are many occurrences of strong winds in the Arctic winter where
snow is advected from other areas under clear skies, which causes biases in catch-
ments. This may explain why Arctic winter precipitation appears more linear than the15

precipitation in other regions.
Comparing the skill levels of the six regions, we found highest skill in the Eastern

Prairies, presumably due to the strong nonlinear signal there, followed by the Arctic
(despite the lack of a nonlinear signal), then the Pacific coastal region, followed by the
Cordillera region, and finally by the low skill regions of the Atlantic coast and the Great20

Lakes, where presumably the lack of a strong ENSO signal there contributed to the low
skills (Shabbar et al., 1997; Shabbar, 2006).

A disadvantage of nonlinear methods such as SVR and BNN is that it is generally
futile to determine the contribution of forecast skill from individual predictors when there
are many predictors. The compression of predictors by PCA further made determining25

the contributions from individual predictors infeasible.
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Table 1. Number of stations, mean winter precipitation, and percentage variance of the winter
extreme precipitation anomalies explained by the first several PCs (with nPC being the number
of PCs chosen as predictands based on cross-validation), for each of the six regions over
Canada.

Region Stns. Mean (mm) % var. (nPC)

R1 (Pacific Coast) 20 78.51 85 (7)
R2 (Cordillera) 43 25.9 80 (8)
R3 (Eastern Prairies) 19 14.2 73 (4)
R4 (Arctic) 11 8.8 65 (4)
R5 (Great Lakes) 15 36.8 79 (7)
R6 (Atlantic Coast) 10 63.8 95 (8)
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Fig. 1. Spatial distribution of the Canadian stations, with different symbols used to indicate the
six geographic regions determined by a cluster analysis. The shading illustrates the Canadian
topography.
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Fig. 2. Cross-validated forecast scores, (a) CORR, (b) IOA, (c) MAESS and (d) SkillV, averaged
over all stations in the Pacific coastal region (region R1) for the winter extreme precipitation at
lead times of 3, 6, 9 and 12 months using the MLR, SVR with linear kernel (SVR-L), nonlinear
SVR with RBF kernel (SVR-R) and BNN models. The error bars indicate ±1 standard error of
the mean. Lead time of 3 months means that predictor data up till September–November were
used to forecast the December–February extreme precipitation.

3542

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/3521/2010/hessd-7-3521-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/3521/2010/hessd-7-3521-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 3521–3550, 2010

Seasonal prediction
of winter extreme

precipitation

Z. Zeng et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3 6 9 12
0.2

0

0.2

0.4

CO
RR

Lead Time

(a)

3 6 9 12
0

0.2

0.4

0.6

0.8

IO
A

Lead Time

(b)

3 6 9 12
0.4

0.2

0

0.2

M
AE

SS

Lead Time

(c)

3 6 9 12
0.2

0.4

0.6

0.8

1

Sk
ill V

Lead Time

(d)

 

 

MLR SVR L SVR R BNN

Fig. 3. Same as Fig. 2, except over the Cordillera (region R2).
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Fig. 4. Same as Fig. 2, except over the Eastern Prairies (region R3).
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Fig. 5. Same as Fig. 2, except over the Arctic (region R4).
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Fig. 6. Same as Fig. 2, except over the Great Lakes (region R5).
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Fig. 7. Same as Fig. 2, except over the Atlantic coast (region R6).
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Fig. 8. Spatial distribution of the forecast correlation skills of the SVR-R model at individual
stations over Canada at lead times of (a) 3, (b) 6, (c) 9 and (d) 12 months.
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Fig. 9. Difference between the forecast correlation skills of the nonlinear SVR model (SVR-R)
and that of the linear SVR model (SVR-L) at lead times of (a) 3, (b) 6, (c) 9 and (d) 12 months.
The two numbers beside each panel give the number of stations where the SVR-R correlation
is higher (lower) than that of the SVR-L model, as indicated by the +(−) sign.
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Fig. 10. Difference between the forecast correlation skills of the SVR-R model and that of the
MLR model at lead times of (a) 3, (b) 6, (c) 9 and (d) 12 months. The two numbers beside each
panel give the number of stations where the SVR-R correlation is higher (lower) than that of the
MLR model, as indicated by the +(−) sign.
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